
FURTHER NORMALIZATION OF THE 
DATA BASE RELATIONAL MODEL 

E. F. Codd 
IBM Research Laboratory 
San Jose, California 

ABSTRACT: 

In an earlier paper, the author proposed a relational model of data as a basis 
for protecting users of formatted data systems from the potentially disruptive 
changes in data representation caused by growth in the data base and changes 
in traffic. A first normal form for the time-varying collection of relations 
was introduced. In this paper, second and third normal forms are defined with 
the objective of making the collection of relations easier to understand and 
control, simpler to operate upon, and more informative to the casual user. 
The question "Can application programs be kept in a viable state when data 
base relations are restructured?" is discussed briefly and it is conjectured 
that third normal form will significantly extend the life expectancy of appli- 
cation programs. 

Fu909umxk7) 

August 31,197l 
Information technolow 

(IR, Documentetion, etc.) 

Compaq_Propriétaire
Rectangle



1. 

1. Introduction 

1.1 Objectives of Normalization 

In an earlier paper [l] the author proposed a relational model of data 

as a basis for protecting users of formatted data systems from the 

potentially disruptive changes in data representation caused by growth 

in the variety of data types in the data base and by statistical changes 

in the transaction or request traffic. Using this model, both the appli- 

cation programmer and the interactive user view the data base as a 

time-varying collection of normalized relations of assorted degrees. 

Definitions of these terms and of the basic relational operations of 

projection and natural join are given in the Appendix. 

The possibility of further normalization of the data base relational model 

was mentioned in [l]. The objectives of this further normalization are: 

1) To free the collection of relations from undesirable insertion, update 

and deletion dependencies; 

2) To reduce the need for restructuring the collection of relations as 

new types of data are introduced, and thus increase the life span of 

application programs; 

3) To make the relational model 

4) To make the collection of re 

more informative to users; 

lations neutral to the query stat istics, 

where these statistics are liable to change as time goes by. 

The rules or conventions upon which the second and third normal forms are 

based can be interpreted as guidelines for the data base designer. They 

are also of concern in the design of general purpose, relational data 

base systems. 



2. 

1.2 Functional Dependence 

When setting up a relational data 

with many possibilities in select 

base, the 

ing the re 

data base designer is confronted 

lational schema itself, let 

alone the selection of its representation in storage, An important, in 

fact fundamental, consideration is that of identifying which attributes 

are functionally dependent on others. Attribute B of relation R is 

functionally dependent on attribute A of R if, at every instant of time, 

each value in A has no more than one value in B associated with it under 

R. In other words,'the projection IIA,B(R) is at every instant of time a 

function from JIA(R) to IIB(R) (this function can be, and usually will be, 

time-varying). We write R.A + R.B if B is functionally dependent on A in 

R, and R.A + R.B if B is not functionally dependent on A in R. If both 

R.A + R.B and R.B -+ R.A hold, then at all times R.A and R.B are in one-to- 

one correspondence, and we write R.A - R.B . 

The definition given above can be extended to collections of attributes. 

Thus, if D,E are distinct collections of attributes of R, E is functionally 

dependent on D if, at every instant of time, each D-value has no more 

than one E-value associated with it under R. The notation +, +-intro- 

‘duced for individual attributes is applied similarly to collections of 

attributes. A functional dependence of the form R.D + R.E where E is a 

subset of D will be called a trivial dependence. 

As an example to illustrate functional dependence (both trivial and 

non-trivial), consider the relation 

U(E#,D#,V#) 

where E# = employee serial number 



3. 

D# = serial number of departmo$,to which employee belongs 

VW = serial number of division to which employee belongs. 

Suppose that an employee never belongs to more than one department, that 

a department never belongs to more than one division, and an employee 

belongs to the division to which his department belongs. Then, we observe 

that 

U.E# +‘U.D# 0) 

u.D# + U.V# (2) 

U.E# -+ U.V# (3) 

U.(E#,D#) + U.V# (4) 

where (4) is a consequence of (3) 

(3) is a consequence of (1) and (2) together. 

Suppose we are also given the following ,additional facts: normally, 

there are many employees belonging to a given department and many depart- 

ments belonging to a given division. Then, we may observe that 

U.D# + U.E# 

and U.V# + u.D# . 

An example of a trivial dependence is: 

U.(E#,D#) + U.E# 

since E# is included in (E#,D#). 

1.3 Candidate Keys 

Each candidate key K of relation R is, by definition, a combination of 

attributes (possibly a single attribute) of R with properties P, and P2: 



4. 

P,: (Unique Identification) In each tuple of R the value of K 

uniquely identifies that tuple; i.e., R.K + R.0 where s2 denotes 

the collection of all attributes of the specified relation; 

P2: (Non-redundancy) No attribute in K can be discarded without 

destroying property P,. 

Obviously, there always exists at least one candidate key, because the 

combination of all attributes of R possesses property P, . It is then 

a matter of looking for a subset with property P2. 

Two properties of candidate keys can be deduced from P, and P2 : 

P3: Each attribute of R is functionally dependent on each candidate 

key of R; 

P4: The collection of attributes of R in a candidate key K is a 

maximal functionally independent set (i.e., every proper subset 

of the attributes of K is functionally independent of every 

other proper subset of attributes of K, and no other attributes 

of R can be added without destroying this functional indepen- 

dence). 

It is left to the reader to show that 

(1) P, is logically equivalent to P3 

(2) P, A P2 implies P4 

(3) a maximal functionally independent set of attributes is not 

necessarily a candidate key. 

For each relation R in a data base, one of its candidate keys is arbitra- 

rily designated as the primary key of R. The usual operational distinc- 

tion between the primary key and other candidate keys (if any) is that 

no tuple is allowed to have an undefined value for any of the primary 



5. 

key components, whereas any other components may have an undefined value. 

This restriction is imposed because of the vital role played by primary 

keys in search algorithms. The statement "B functionally depends on A in 

R" may be expressed in the alternative form "A identifies B in R", since 

in this case A satisfies condition Pl for the relation IIA,B(R)* 

2. The Second Normal Form 

2.1 Introductory Example 

The basic ideas underlying the second and third normal forms are simple, 

but they have many subtle ramifications. The author has found that 

numerous examples are needed to explain and motivate the precise defini- 

tions of these normal forms. Accordingly, we begin with the simplest case 

of a relation in first normal form but not in second (i.e., a relation of 

degree 3): 

T(S#,P#,SC) 

where S# = supplier number 

P# = part number 

SC = supplier city. 

A triple (x,y,z) belongs to T if the supplier with serial number x supplies 

the part with serial number y, and supplier x has his base of operations 

in city 2. A given part may be supplied by many suppliers, and a given 

supplier may supply many parts. Thus, the following time-independent 

conditions hold: 

T.S# + f.p# 

T.P# $, T.S# . 

In other words, although the attributes S#, P# are related under T, they 

are functionally independent of one another under T. Now, each supplier 



6. 

has (in this example) only one base of operations and therefore only one 

city. Thus, 

T.S# + T.SC . 

Intuitively, we can see that the only choice for the primary key of T is 

the attribute combination (S#,P#). 

Looking at a sample instantaneous tabulation of T (Fig. 1) the undesirable 

properties of the T schema become immediately apparent. We observe for 

example that, if supplier u relocates his base of operations from Poole 

to Tolpuddle, more than one tuple has to be updated. Worse still, the 

number of tuples to be updated can , and usually will, change with time. 

It just happens to be 3 tuples at this instant. 

T(S#,P#,SC) 

ul 'POOLE' 

u 2 'POOLE' 

u 3 'POOLE' 

vl 'FEISTRITZ' 

v 3 'FEISTRITZ' 

Fig. 1: A Relation not in Second Normal Form 

Now suppose supplier v ceases to supply parts 1 and 3, but may in the near 

future supply some other parts. Accordingly, we wish to retain the infor- 

mation that supplier v is located in Feistritz. Deletion of one of the 

two tuples does not cause the complete disappearance of the association 

of v with Feistritz, but deletion of both tuples does. This is an 

example of a deletion dependency which is a consequence of the relational 



7. 

schema 'itself. It is left to the reader to illustrate a corresponding 

insertion dependency using this example. 

Conversion of T to second normal form consists of replacing T by two of 

its projections: 

Tl = ?S#,P#(T) 

T2 = %#,SbT) 

We thus obtain the relations tabulated in Fig. 2. 

Tl bW#) T@,SC) 

ul U 'POOLE' 

u 2 V ‘FEISTRITZ’ 

u 3 

vl 

v 3 

Fig. 2: Relations in Second Normal Form 

Note how the undesirable insertion, update and deletion dependencies 

have disappeared. No essential information has been lost, since at any 

time the original relation T may be recovered by taking the natural join 

of Tl and T2 on S#. 

2.2 More Probing Examples 

Unfortunately, the simple example above does not illustrate all of the 

complexities which can arise. For expository purposes we now consider 

five possible relations in a data base concerning suppliers, parts, and 

projects. In a crude sense these relations represent five alternative 

possibilities - ft. is nat intended that they coexist in a single data 



8. 

base. Note, however, that some contain more information (in the form of 

additional attributes) than others. In each case the primary key is 

underlined. 

R, (s#,w,J#) 
R~(X#,S#,P#,J#) 

R~(X#,S#,P#,J#SQ) 

R&S#,P#,JW~SC) 

RS(S#,P#,JWLSC) 

where S# = supplier number 

P# = part number 

J# = project number 

X# = serial number 

Q = quantity supplied 

SC = supplier city 

A triple (x,y,z) belongs to R, if supplier x supplies part y to project z. 

The same interpretation holds for IIs# p# J# (Ri) for i = 2,3,4,5. In 
9 , 

each of the five relations, a given combination of supplier and part 

may be associated with more than one project, a given combination of part 

and project may be associated with more than one supplier, and a given 

combination of project and supplier may be associated with more than one 

part. Thus, for all i 

Ri.(S#,P#) $, Ri. (J#) 

Ri.(P#,J#) f- Ri.(S#) 

Ri.(J#,S#) f- Ri.(P#) . 



9. 

In each of the relations that have the attribute Q, there is only one 

value of Q for a given value of the attribute combination (S#,P#,J#). 

Thus, 

Ri. (S#,P#,J#) + Ri.Q for i = 3,4,5. 

However, the value of Q is not uniquely determined by any proper subset 

of these attributes. Thus, for i = 3,4,5 

Ri.(S#,P#) $, Ri.Q 

Ri.(P#,J#) + Ri.Q 

Ri.(J#,S#) + Ri.Q . 

In each of the relations that have the attribute SC, there is only one 

value of SC for a given value of SR. Thus, for i = 4,5 

Ri.S# + Ri.SC . 

In three of the relations a serial number key X# has been introduced 

and selected as the primary key, even though there is already an attribute 

combination (S#,P#,J#) capable of acting as the primary key. Thus, 

for i = 2,3,4 

Ri*X# - Ri .(S#,P#,J#) . 

This is not at all unusual in practice (consider a purchase order number, 

for instance). 

In what follows, we shall suppose that in the given relations there are 

no functional dependencies other than those itemized above together with 

those that can be formally deduced from them. Fig. 3 summarizes the 

non-trivial dependencies (but not the non-dependencies) in a parent rela- 

tion R from which Rl,R2,R3,R4,R5 can be derived by projection. 



10. 

Fig. 3: Attribute Dependencies in R 

In all five sample relations above, (S#,P#,J#) is a candidate key. In 

R, and RS it is the primary key also. 

primary key in relations R2,R3,R4 . 

X# is both a candidate key and the 

ion there may be several d 

is arbitrari ly designated 

primary key. Let us call any attribute of R which participates 

2.3 Prime Attributes 

We have observed that in a given relat 

candidate keys* and, in this case, one 

stinct 

as the 

n at 

least one candidate key of R a prime attribute of R. All other attributes 

of R are called non-prime. In sample relations R,,R2 all attributes 

are prime. In R3 the only non-prime attribute is Q, while in R4,RS both 

Q and SC are non-prime. 

2.4 Full Functional Dependence 

Suppose D,E are two distinct subcollections of the attributes of a relation 

R and 

R.D -t R.E 

* Although distinct, they need not be disjoint. 



11. 

If, in addition, E is not functionally dependent on any subset of D 

(other than D itself) then E is said to be fully dependent on D in R. 

Intuitively, E is functionally dependent on the whole of D, but not on 

any part of it. An example of full dependence is: 

R3.(S#,P#,J#) + RS.Q . 

2.5 Definition of Second Normal Form 

A relation R is in second normal form if it is in first normal form and 

every non-prime attribute of R is fully dependent on each candidate key 

of R.* This definition rules out both kinds of undesirable dependence 

of the attribute SC: 

1) The obvious functional dependence of SC in R5 on a portion S# 

of the primary key; 

2) The less obvious functional dependence of SC in R4 on a portion 

S# of a candidate key that is not the primary key. 

Thus, R4 and R5 are not in second normal form. 

Two special cases of the definition are worth noting. Suppose R is in 

first normal form and one or both of the following conditions hold: 

Cl : R has no non-prime attribute; 

c2: Every candidate key of R cons ists of just a sing le attribute. 

k Al though each prime attribute is fully dependent on each candidate key of 
which it is a component, it is possible for a prime attribute to be non7ully 
dependent on a candidate key of which it is not a component. Thus, this 
definition is changed in meaning if the termTon-prime" is dropped. An 
example which illustrates this distinction is R(A,B,W,E,F) 
where 

R.(A,B,C)- R.(D,E) + R.F 

R%) -+ R.D . + R.C 

Prime attribute C is not fully dependent on candidate key (D,E); neither 
is D on (A,B,c). 



12. 

Then, without further investigation, we can say that R is in second normal 

form. Observe that both R, and R, are in second normal form, because 
I L 

special case Cl applies. Relation RS is an example of 

second normal form, but not as a result of the special 

above. 

a relation in 

conditions Cl,C2 

2.6 Optimal Second Normal Form 

In section 2.1 a simple example of conversion from first to second 

normal form was discussed. The operation of projection, employed twice 

in that example, is adequate for the general case. However, to keep the 

user from being confused by unnecessary relation names (and to keep the 

system catalog from getting clogged by such names), projection should be 

applied sparingly when normalizing. 

Consider the relation T(S#,P#,SN,SC) 

where S# -t SN (supplier name) 

S# + SC (supplier city) . 

If we apply projection sparingly in converting to second normal form, 

we obtain collection Cl say : 

On the other hand, we could apply projection liberally and obtain collec- 

tion C2 say : 

‘~#,p#(~) ’ nS#,SN(T) ’ ‘S#,dT) ’ 

Both C, and C2 are in second normal form and both retain all the essential 

information in the original relation T. However, collection Cl contains 

the fewest possible relations , and is accordingly said to be in optimal 

second normal form. C2 is in non-optimal second normal form. 



13. 

3. Third Normal Form 

3.1. Transitive Dependence 

Suppose that A,B,C are three distinct collections of attributes of a 

relation R (hence R is of degree 3 or more). Suppose that all three of 

the following time-independent conditions hold: 

R.A + R.B, R.B + R.A, 

R.B+R.C. 

From this we may conclude that two other conditions must hold: 

R.A + R.C , R.C + R.A 

and we may represent the entire set of conditions on A,B,C as shown in 

Fig. 4. Note that R.C -t R.B is neither prohibited nor required. 

Fig. 4: Transitive Dependence of C on A under R 

In such a case we say that C is transitively dependent on A under R. In 

the special case where R.C -f R.B also, both B and C are transitively 

dependent on A under R. 

To illustrate transitive dependence, consider a relation W concerning 

employees and their departments: 

W(E#,JC,D#,M#,CT) 

where E# = employee serial number 

JC = employee jobcode 

D# = department number of employee 



14. 

M# = serial number of department manager 

CT = contract type (government or non-government) 

Suppose that each employee is given only one jobcode and is assigned to 

only one department. Each department has its own manager and is involved 

in work on either government or non-government contracts, not both. The 

non-trivial functional dependencies in W are as shown in Fig. 5 (the non- 

dependencies are implied). 

Fig. 5: Example of Several Transitive Dependencies 

If M# were not present, the only transitive dependence would be that of 

CT on E#. With M# present, there are two additional transitive depen- 

dencies: both D# and M# are transitively dependent on E#. Note, however, 

that CT is not transitively dependent on either D# or M#. 

Looking at a sample instantaneous tabulation of W (Fig. 6) the undesirable 

properties of the W schema become immediately apparent. We observe for 

example that, if the manager of department y should change, more than one 

tuple has to be updated. The actual number of tuples to be updated can, 

and usually will, change with time. A similar remark applies if depart- 

ment x is switched from government work (contract type g) to non-government 

work (contract type n). 



15. 

W(E#, JC; DX, M#, CT) 

1 a x 11 g 

2 c x 11 g 

3 a y 12 n 

4 b x 11 g 

5 b Y 12 n 

6 c Y 12 n 

.i a z 13 n 

8 c z 13 n 

Fig. 6: A Relation not in Third Normal Form 

Deletion of the tuple for an employee has two possible consequences: 

deletion of the corresponding department information if his tuple is the 

sole one remaining just prior to deletion , and non-deletion of the depart- 

ment information otherwise. If the data base system does not permit any 

primary key to have an undefined value, then D# and CT information for a 

new department cannot be established in relation W before people are 

assigned to that department. If, on the other hand, the primary key E# 

could have an undefined value, and if a tuple were introduced with such 

a value for Ed together with defined values for D# (a new department) 

and CT, then insertion of E# and JC values for the first employee in 

that department involves no new tuple, whereas each subsequent assignment 

of an employee to that department does require a new tuple to be inserted. 

Conversion of W to third normal form consists of replacing W by two of 

its projections: 

w1 = JIE#,JC,D#(W) 



16. 

w2 = RD#,M#,CT(W) ' 

We thus obtain the relations tabulated in Fig. 7. 

WJ (E#, JC, D#) wp (D#, M#, CT) 

1 a x X JJ 9 
2 c x Y 12 n 

3 a Y Z 13 n 

4 b x 

5 b Y 

6 c Y 

7 a z 

8 C Z 

Fig. 7: Relations in Third Normal Form 

Note how the undesirable insertion, update and deletion dependencies have 

disappeared with the removal of the transitive dependencies. No essential 

information has been lost, since at any time the original relation W may 

be recovered by taking the natural join of W, and W2 on D#. 

3.2 Nonremovable Transitive Dependence 

It is not always possible to remove all transitive dependencies without 

losing information. This is illustrated by a relation R(A,B,C) in which 

R.(A,B) + R.C , R.C f, R.(A,B) 

R.C +R.B . 

Thus, B is transitively dependent on the primary key (A,B). 

3.3 Definition of Third Normal Form 

A relation R is in third normal form if it is in second normal form and 

every non-prime attribute of R is non-transitively dependent on each 



17. 

candidate key of R. Relations T1,T2,R1,R2,R3 of section 2.1 are in third 

normal form. Relations R4,RB are not in third normal form, because they 

are not even in second. Relation U of section 1.2 is in second normal 

form, but not in third, because of the transitive dependence of V# on E#. 

Any relation R in third normal form has the following property: 

P5: Every non-prime attribute of R is both fully dependent and 

non-transitively dependent on each candidate key of R. 

This property is an immediate consequence of the definition given above. 

Note that the definition has been so formulated that it does not prohibit 

transitive dependence of the kind illustrated in section 3.2. 

3.4 Optimal Third Normal Form 

Suppose C2 is a collection of relations in optimal second normal form 

and projection is applied to convert to third normal form. The resulting 

collection of relations C3 is in optimal third normal form relative to 

C, if both of the following conditions hold: 

1) C3 must contain the fewest possible relations (as in the case of 

the optimal second normal form) each in third normal form; 

2) Each relation in C3 must not have any pair of attributes such that 

one member of the pair is strictly transitively dependent* on the 

*Attribute C is strictly transitively dependent on attribute A under R if 
there is an attribute B such that 

R.A + R.B , R.B -f-+ R.A 

R.B -f R.C , R.C fc R.B 

This is a special case of transitive dependence (see definition in section 3.1) 



18. 

other in some relation of C2 (this condition forces attributes 

which are "remotely related" to be separated from one another in 

the normalized collection of relations). 

Application of these conditions is illustrated in Fig. 8a, 8b using the 

relation W of section 3.1. Fig. 8a treats the normalization of Wo(obtained 

from W by dropping manager number M#). Fig. 8b treats the normalization of 

W itself, and shows how one-to-one correspondences are forced to occur 

between candidate keys of the projections (instead of between non-prime 

attributes). Note also the non-uniqueness of the optimal third normal 

form in Fig. 8b. 

4. Admissible States 

When converting a time-varying data base from first normal form to 

second, or from second to third, certain new insertion and deletion 

possibilities are introduced. Let us look at the example in section 

2.1 again. 

In first normal form the data base Bl consists of the single time- 

varying relation denoted by the schema 

T(S#,P#,SC) . 

In second normal form the corresponding data base B2 consists of two 

relations denoted by the schema 

Tl (WV) T2@SC) 

where, for all time 

1) Tl = %#,P#(l) 

2) T2 = QSC(T) . 

As usual, the primary keys are underlined. 



19. 

COLLECTION OF PROJECTIONS OF W, TNF OPTIMAL VIOLATES 

E#-JC E#-D# E#-CT YES NO 1)s 2) 

YES NO 2) 

YES YES NIL 

Fig. 8a: Conversion of W. to Third Normal Form 

COLLECTION OF PROJECTIONS OF W TNF OPTIMAL COMMENTS 

/ 
JC E# -CT D# and M# 

OR are 
M#-CT NO - transitively 

OR dependent 
D#-CT on E# 

EX-JC EX-D# VIOLATES 

1) 

OJc #\CT 
En\ P 

M# H 
YES YES VIOLATES 

D# NIL 

EX<;; [:;CT 
VIOLATES 

YES YES NIL 

Fig. 8b: Conversion of W to Third Normal Form 



20. 

A data base state (i.e., instantaneous snapshot) is admissible relative 

to a given schema if 

1) each relation named in the schema has tuples whose components 

belong to the specified domains; 

2) all tuples of a relation named in the schema are distinct; 

3) no tuple has an undefined value for its primary key (and thus 

no component of the primary key may have an undefined value). 

The last condition makes an operational distinction between that candidate 

key selected to act as the primary key of a relation and all other candi- 

date keys of that relation. 

Given any admissible state for Bl we can produce a corresponding 

admissible state for B2 by applying the operation of projection as in 

the example above. The original Bl state can be recovered by taking the 

natural join (see Appendix for definition) of Rl and R2 on S#. 

We now observe that the schema for B2 has more admissible states than 

that for Bl. Thus, in B2 it is perfectly admissible to have a S# value 

appearing in T2 which does not appear at all in T,, or vice versa, as 

in the B2-state exhibited in Fig. 9 . 

Tl (Sk P#) T2W, SC) 

u 1 U 'POOLE' 

u 2 V 'FEISTRITZ' 

v 1 W 'SWANAGE' 

2 3 

Fig. 9: An Admissible State for B, 



21. 

If we now take the natural join of R, and R2 on S#, we obtain the state 

(or tabulation) of T exhibited in Fig. 10. Although this state is 

admissible for B,, essential information has been lost. 

T(S#, P#, SC) 

u 1 'POOLE' 

u 2 'POOLE' 

v 1 'FEISTRITZ' 

Fig. 10: The Natural Join of Relations in Fiq. g 

An obvious property of 

base schema is that by 

tuple deletion all the 

the class of admissible states for a given data 

means of the operations of tuple insertion and 

admissible states are reachable from any given 

admissible state. Clearly, the schema for B2 permits insertions and 

deletions not permitted by the schema for B,. It is accordingly reason- 

able to say that these schemata are not insertion-deletion equivalent. 

5. Query Equivalence 

A useful notion of query equivalence of data base states can be based 

on the algebraic view of queries. In this view retrieval of data is 

treated as the formation of a new relation from the data base relations 

by some operation of a relational algebra (see [2]). 

If 0 is a relational algebra, B is a collection of relations and R is a 

relation which is derivable from B using operations of the algebra 0 

only, then we say (as in [1]) that R is O-derivable from B. Suppose 

now that we have two data bases A,B which at time t are in states At,Bt 

respectively. We say that the data base states At,Bt are query-equivalent 



22. 

providing they are each G-derivable from the other and 0 is a relation- 

ally complete algebra (see [Z]). The reasonableness of this definition 

stems from the fact that, if each of the data base states At,Bt is 

G-derivable from the other, then x relation R which is O-derivable 

from one must be O-derivable from the other. 

Fig. 11 summarizes the observations made in section 4 on admissible 

states. It also illustrates the fact that the set S of all admissible 

states for a data base cast in first normal form is query-equivalent to a 

subset Tl of all admissible states when this data base is cast in second 

normal form. Similarly, the set TluT2 of all admissible states for this 

data base cast in second normal form is query-equivalent to a subset Ul 

of all admissible states when the same data base is cast in third normal 

form. 

6. Growth and Restructuring 

One of the principal reasons for making application programs interact with 

an abstract collection of relations instead of their storage representa- 

tions is to keep these programs from being logically impaired when the 

storage representations change. Now we wish to consider (but only briefly) 

what happens to the application programs when the collection of relations 

is itself changed to conform to a new schema. Simple additions of new 

data base domains and new relations have no effect. Outright removal of 

a relation R obviously cripples those programs that previously made use of 

R. Replacement of a relation by one of its projections will cripple those 

programs that previously made use of the attributes now dropped. 



23. 

NORMAL FORM # ADMISSIBLE STATES 

A 1 T * states admissible in (2) 
with no counterparts in (1) I 

(2) 

lr 1 T + states admissible in (3) 
with no counterparts in (2) I 

(3) 

Fig. 11: Admissible States for a Data Base cast 
in Normal Forms #1,2,3. 



24. 

The really interesting type of change is replacement of a relation R by 

two or more of its projections such that R may be recovered by taking the 

natural join of these projections. We discussed this type of change in 

sections 2 and 3 in the context of conversion to second and third normal 

forms respectively. In the present context of data base growth we call 

this phenomenon attribute migration. 

Some of the reasons why attribute migration may accompany data base 

growth are as follows: 

1) Through continued acquisition of additional attributes a relation has 

become too cumbersome in size and fuzzy in meaning; 

2) New controls (e.g., ownership of data, access authorization, recovery, 

etc.) are being introduced; 

3) There has been a change in that part of the real world which the data 

base reflects or models. 

To illustrate the effect of attribute migration on application programs, 

consider the splitting of data base relation U(E#,JC,D#,M#,CT) into the 

two projections: 

Ul = 'E#,JC,D#(U) 

" = 'D#,M#,CT (u) 

(see section 3.1 for the interpretation of U and its attributes). 

We first examine a query and then an insertion. Each is expressed in the 

data base sublanguage ALPHA [3]. 

f* Find the contract type (CT) for the employee whose serial number (E#) 



25. 

is 1588. Place result in workspace W. 

gEJ w  U.CT:(U.E# = 1588) 

When U is replaced by the two projections Ul, U2, queries on U must under- 

go a transformation to make them work as before. If the data base system 

were supplied with a suitable set of substitutions it could make this 

transformation automatically. We do not propose to go into the details 

here, but merely state that the resulting transformed query would be: 

$EJ w  U2.CT: 3Ul((Ul.D# = U2.D#)h(Ul.E# = 1588)) 

The real difficulty arises with insertion and deletion. 

** Insert from workspace W into the data base relation U a tuple for a 

new employee with serial number 1492 and contract type non-government 

(n). Values for his jobcode, department number, and manager number 

are not yet available. 

PUT W U 

When data base relation U is replaced by Ul, U2 and we attempt to trans- 

form this insertion to make it work on these projections, we find that the 

insertion of two new tuples is necessary: one into Ul, and one into U2. 

The insertion into Ul presents no problem, because we have a value (1492) 

for its primary key component (E#). In the case of U2, however, we do 

not have a value for its primary key component (D#). To cope with this 

difficulty, the system could temporarily insert a fictitious (but defined) 

value to represent a department (as yet undetermined) which is assigned to 

non-government work. Unfortunately, when the total data base is considered 

together with all the possible partially defined associations which may 

have to be temporarily remembered, the system may require a very large 

pool of fictitious values to call upon. 



26. 

We have seen that attribute migration can logically impair an application 

program. Further, it may be feasible to systematically re-interpret the 

data base requests made by a program P so as to make P work correctly 

again. This problem is simpler for those programs that avoid insertion 

and deletion on the relations affected by attribute migration. Whether or 

not this special case holds, the re-interpretation is likely to cause 

significant system overhead. Avoidance of attribute migration is accord- 

ingly desirable. It is this author's thesis that, by casting the data 

base in third normal form at the earliest possible time and by keeping it 

that way an installation will reduce the incidence of attribute migration 

to a minimum, and consequently have less trouble keeping its application 

programs in a viable state. 

7. Conclusion 

In section 1 we introduced the notion of functional dependence within a 

relation - a notion that is fundamental in formatted data base design. 

Using this notion, two new normal forms were defined. Fig. 12 summarizes 

the relationship between the three normal forms introduced by this author. 

Notice that as a collection of relations is translated from first normal 

form to second, and then to third, the conditions applied are progressively 

more stringent. 

In the past, design of records (computerized or not) for commercial, in- 

dustrial and government institutions has been oriented in an ad hoc way 

to the needs of particular applications. For the large integrated data 

bases of the future, application-independent guidelines for logical 



27. 

UNNORMALIZED FORM 

I 

eliminate domains which 

have relations as elements 

FIRST NORMAL FORM 

I’ eliminate non-full dependence 

of non-prime attributes on 

candidate keys 

SECOND NORMAL FORM 

I 

eliminate transitive dependence 

of non-prime attributes on 

candidate keys 

THIRD NORMAL FORM 

Fig. 12: Three Normal Forms 



28. 

record design are sorely needed. This paper is intended to provide such 

guidelines. 

It is also conjectured that physical records in optimal third normal form 

will prove to be highly economical in space consumed. In some cases a 

further saving in space can be obtained by factoring (see [2]) relations 

in third normal form. 

Although the three normal forms are query equivalent in the sense that 

the set of queries answerable by a collection C in first normal form is 

transformable into queries yielding the same information from the second 

and third normal forms of C, there is a difference in information content 

of the three forms. The second is more informative than the first, and 

the third is more informative than the second. The increased information 

lies in the data description (rather than in the data described) as a con- 

sequence of the underlying conventions. Like the declarations of redundan- 

cies and combinational possibilities within the relational model (see Cl]), 

the normal forms described above tend to capture some aspects of the se- 

mantics (minor, of course). Thus, a relational model in second normal 

form, and more especially, one in third normal form is likely to be more 

readily understood by people who are not everyday users of the data. It 

is also likely to be better tuned to the authorization requirements of 

installations. 

Compared with first normal form, the second and third do carry with them 

the penalty of extra names. In the many data bases that have relations of 

high degree, this name penalty will not be nearly as severe as that 



29. 

associated with a complete conversion to nested binary relations. 

Some queries will also need to employ more join terms for cross-referen- 

cing between relations than might otherwise be the case. This potential 

burden on the user can be eased by user-declared (and possibly pooled) 

cross-referencing for heavily used types of queries. 

8. Acknowledgments 

The author is indebted to Claude Delobel of the Conservatoire National 

des Arts et Metiers, Paris for indicating an inadequacy in the treatment 

of one-to-one correspondences in an early draft of this paper. Working 

from this draft, C. J. Date, I. J. Heath and P. Hopewell of the IBM 

Development Laboratory in Hursley, England have developed some theoretical 

and practical applications of the third normal form, which will be pub- 

lished soon [4,5], Their interest in and enthusiasm for the third normal 

form encouraged the author to produce a more detailed paper than the 

original version. Thanks are also due to F. P. Palermo and J. J. Rissanen 

of IBM Research, San Jose for suggesting changes which improved the 

clarity. 



30. 

References 

1. E. F. Codd, "A Relational Model of Data for Large Shared Data Banks", 
Comm. ACM 13 6, June 1970, 377-387. - 

2. E. F. Codd, "Relational Completeness of Data Base Sublanguages", Courant 
Computer Science Symposia 5 "Data Base Systems", New York City, May 24-25, 
1971, to be published by Prentice-Hall. 

3. E. F. Codd, "A Data Base Sublanguage founded on the Relational Calculus", 
IBM Research Report RJ893, San Jose, California, July 26, 1971. 

4. I. J. Heath, "Unacceptable File Operations in a Relational Data Base", Proc. 
1971 ACM-SIGFIDET Workshop on Data Description, Access and Control, to be 
available from ACM HQ, 1972. 

5. C. J. Date, P. Hopewell, "File Definition and Logical Data Independence", 
Proc. 1971 ACM-SIGFIDET Workshop on Data Description, Access and Control, 
to be available from ACM HQ, 1972. 



31. 

APPENDIX 

Al. Basic Definitions 

Given sets D1,D2,..., D, (not necessarily distinct), R is a relation on 

these n sets if it is a set of elements of the form (dl,d2,...,dn) where 

djcDj for each j=l,Z,...,n. More concisely, R is a subset of the 

Cartesian product D1xD2x...xDn. We refer to Dj as the jth domain of R. 

The elements of a relation of degree n are called n-tuples or tuples. 

A relation is in first normal form if it has the property that none of 

its domains has elements which are themselves sets. An unnormalized 

relation is one which is not in first normal form. 

A data base B is a finite collection of time-varying relations defined 

on a finite collection of domains, say D,,D*,...,D 
P 

. Suppose relation R 

is one of the relations in B, and is of degree n. To declare R to a 

data base system we need to cite n of the p data base domains as those 

on which R is defined. 

Now, not all these n cited domains need be distinct. Instead of using 

an ordering to distinguish these n citations from one another (as is 

common in mathematics), we shall use a distinct name for each citation 

and call this the attribute name for that particular use of a data base 

domain. Each distinct use (or citation) of a data base domain in defining 

R is accordingly called an attribute of R. For example, a relation R of 

degree 3 might have attributes (A1,A2,A3) while the corresponding data 

base domains are (DS,D7,D5). Attribute names provide an effective means 

of protecting the user from having to know domain positions. 



32. 

A2. Projection 

Suppose r is a tuple of relation R and A is an attribute of R. We adopt 

the notation r.A to designate the A-component of r. Now suppose A is 

instead a list (A,,A2,...,Ak) of attributes of R. We extend the notation 

r.A so that, in this case: 

r.A = (r.A,,r.A2,...,r.Ak) . 

When the list A is empty, r.A = r. 

Let C = (C,,C,,..., Cn) be a list of all the attributes of R. Let A be a 

sublist (length k) of C and r a tuple of R. Then, we adopt the notation 

r.Kt,o designate the (n-k)-tuple r.B where B is the complementary list of 

attributes obtained by deleting from C those listed in A. 

The projection of R on the attribute list A is defined by 

I[A(R) = {r.A: rsR1 

A more informal definition is given in [l]. 

A3. Natural Join 

Suppose R,S are two relations and A = (A,,...,Ak), B = (B,,...,Bk) are 

equal-length lists of the attributes of R,S respectively. Suppose that 

for i = 1,2 . . ..k attributes Ai,Bi are comparable: that is, for every 

reR, saS 

r.Ai = s.Bi 

is either true or false (not undefined). We say that 

r.A = s.B 

if (r.A, = s.B+ . . . A(r.Ak = s.Bk) 

Then, the natural join of R on A with S on B is defined by: 



33. 

R*S = ((r,s.B): reR A s&S A (r.A = s.B)) 

This definition is the same as that given in [l] except that there is no 

requirement that 

n*(R) = $$) 

for relations R,S to be joinable. This condition was imposed in [l] 

solely for the purposes of treating redundancy and consistency, 

A4. Notation for Functional Dependence 

We have deliberately employed the redundant notation R.A + R.B (instead 

of A p B, for example), because the redundancy pertains only to the 

intra-relation functional dependencies examined in this paper. The 

author is now investigating inter-relation functional dependencies of the 

form R.A + S.B . 


	Title
	Abstract
	1. Introduction
	2. Second Normal Form
	3. Third Normal Form
	4. Admissible States
	5. Query Equivalence
	6. Growth and Restructuring
	7. Conclusion
	8. Acknowledgments
	References
	Appendix



